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For the Z, lattice gauge theory in four dimensions or the related spin system in two 
dimensions, we consider real space renormalization group transformations on the most general 
single plaquette or nearest neighbor action. The Migdal-Kadanoff recursion relations in differen- 
tial form have several fixed points and predict a rich phase structure. 

1. Introduction 

The real space renormalization group is a powerful and elegant tool for the study 
of phase transitions in statistical systems. Concepts such as the universality of 
critical exponents are readily explained in terms of renormalization group flows in 
the vicinity of fixed points. In this paper we discuss how generalized Z, models 
provide a simple illustration of these ideas in a two-parameter coupling constant 
space. 

For an exact treatment, one should consider renormalization group equations for 
an infinite number of coupling constants, involving both nearest and non-nearest 
neighbor interactions. For practical calculation some truncation to a few couplings is 
necessary. The Migdal-Kadanoff recursion relations provide such a truncation [l]. 
Although the errors involved are difficult to assess, the approximation is particularly 
simple and makes specific predictions for critical temperatures and exponents. For 
gauge theories the relations predict the critical nature of four dimensions. Indeed, 
before the advent of Monte Carlo calculations [2], this was the strongest evidence for 
quark confinement in the non-Abelian gauge theory of the strong interactions. 
Unfortunately, the recursion relations often make incorrect predictions on the order 
of the gauge theory transitions. Nevertheless, they appear to correctly predict when a 
phase transition is to be expected. This, plus the simplicity of the method, makes it 
worthy of further study. 

* This work was supported by the U.S. Department of Energy under Contract number DE-ACOZ- 
76CHOOO16. 
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Recently considerable attention has been paid to alternatives to the Wilson action 
in lattice gauge theory [3]. One type of variant continues to keep the action as a sum 
over the lattice plaquettes but generalizes the class function associated with these 
plaquettes. As a continuous group has an infinite number of characters, the most 
general such action involves an infinite number of parameters. Again for practical 
calculations a truncation is necessary. Monte Carlo simulation for the SU(2) model 
with the action being a linear combination of fundamental and adjoint traces 
revealed a rich phase structure [4]. Much of this phase diagram was recently 
reproduced via the Migdal-Kadanoff relation although, as usual, the first order 
nature of the transitions did not appear [5]. 

In this paper we treat the considerably simpler group Z 4. With this group the 
most general plaquette action has only two dynamical parameters and no truncation 
of the character expansion is necessary. Having two parameters permits one to study 
renormalization group flows on a two-dimensional surface. We will see predicted 
critical behavior along lines in this plane which end at renormalization group fixed 
points. This simple example illustrates the universality of the critical exponents 
along these lines. Several features of the phase diagram bear a strong qualitative 
resemblance to the structures in the two coupling SU(2) model. 

The Migdal-Kadanoff relations predict identical structure for spin systems in two 
dimensions and gauge theories in four [1]. Thus our discussion applies to both. The 
two-dimensional Z 4 nearest neighbor spin model is equivalent to the Ashkin-Teller 
model [6] which consists of two coupled Ising models. It is perhaps interesting to 
note that the four-dimensional Z 4 gauge model is not equivalent to two coupled Z z 
gauge models. Because the elements of Z 4 are not all their own inverses, the 
orientation of plaquettes plays a role in the strong coupling expansion. Strong 
coupling diagrams involving non-orientable and non-interacting closed surfaces 
(Klein bottles) differ between Z 4 and Z 2 × Z 2 models. In less than four dimensions 
these diagrams do not play a role and the models are equivalent*. 

The general Z 4 model also has the nice property of being self dual. The recursion 
relations in differential form preserve this symmetry and thus can exactly locate 
transition points on the self-dual line. In addition, certain dual pairs of critical lines 
are predicted. 

The outline of this paper is as follows. In sect. 2 we review the general Migdal- 
Kadanoff approach and show that the resulting renormalization group equations 
respect duality for Zp systems. In sect. 3 we specialize to Z 4 and find the explicit 
renormalization group function. Sect. 4 contains a discussion of the predicted fixed 
points and flows. The universality of the critical exponents along the transition lines 
is discussed. Conclusions and comments on certain missed features of the phase 
diagram appear in sect. 5. 

* In the literature there is an incorrect claim on this point, ref. [7]. 
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2. The Migdal-Kadanoff recursion relation 

The Migdal-Kadanoff recursion relations represent a simple approximate method 
for comparing theories with different lattice spacings. We will discuss them for 
d-dimensional gauge theories, although the renormalization group functions thus 
found are identical up to a normalization factor to those of the d/2 dimensional 
nearest neighbor spin system. 

We begin with the usual lattice gauge theory variables, elements (U~j) of the gauge 
group located on the bonds (/j) of a hypercubic lattice. Associated with each 
plaquette [] is the group element U n representing the product of link variables 
around the plaquette with an arbitrary starting site. The partition function or path 
integral takes the form 

z -- f (dU)e s , (2.1) 

where the action is a sum over all plaquettes 

S= ESD(Uo) (2.2) 
[ ]  

and all links are integrated over the group. The action for any plaquette is a real 
class function 

s o ( u )  = S ~ ( g V g - ' )  = s*~(u) ,  (2.3) 

when g is an arbitrary group element. We introduce two sets of parameters, one for 
the action and one for the exponentiated action, using the character expansion 

so(v)  = E a.x.(V),  (2.4) 
?/ 

eSo(~)-- Eb.x. (V).  (2.5) 
n 

Here X,,(U) is the trace of U in the nth irreducible representation of the gauge 
group. The characters satisfy the orthogonality relations 

EX,, (U)x,,(U ) = 8(U, U'), (2.6) 
n 

f dUx*~ (V)x;(Vu') = az !8..,x.(U'), (2.7) 

where d, is the dimension of the matrices in the nth representation, dU is the 
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invariant group measure, and 8(U, U') is the invariant delta function on the group. 
These relations allow us to invert eqs. (2.4, 2.5) 

= f dVx*(U)S=(U), (2".8) 

= f dU x* ( U )e so<u). (2.9) 

We now wish to compare this theory to one on a lattice of larger spacing. We will 
first change the spacing along one direction and then repeat the process on the other 
directions. This process will introduce anisotropies in the couplings so we tempo- 
rarily label the couplings with indices (#, p) denoting the planes of the plaquettes 

, (2.10) 

B , ~ B ,  (~',"), (2.11) 

b , ~  b¢, ~'") (2.12) 

Let us first consider doubling the spacing in say the x direction. We wish to integrate 
out all variables with odd x coordinate. To simplify matters it is useful to tempo- 
rarily go into an axial gauge and set all links in the x direction to unity. Then 
plaquettes parallel to the x direction represent nearest neighbor couplings of the 
unfixed links at successive x coordinates. Plaquettes orthogonal to the x direction 
couple links all with the same x coordinate. On integrating out links with some given 
x coordinate, these orthogonal plaquettes will induce long range couplings. To 
eliminate these, the approximation of plaquette moving is made. All plaquettes with 
only odd x coordinates are neglected and, to compensate, those with even x 
coordinates have their couplings fl increased by a factor of two. Thus the recursion 
takes orthogonal couplings to stronger values 

fl~" ") ~ 2fl,, 0'' ") if ~ and v * x. (2.13) 

The integration over the odd sites is now simply a convolution of the plaquettes 
parallel to the x axis and gives the new action 

exp(S~x")(U))  ~ f dU'  eS'X'"~W"e s'x'"'w'-'U) . (2.14) 

In the Fourier transform space of the characters, convolutions are a simple product; 
the relations (2.6) and (2.7) give 

b~ x'') ~ d ; '  (b~:" ,))2. (2.15) 
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One can now undo the gauge fixing, go to a new direction, and repeat the entire 
procedure. 

Unfortunately these approximate decimations in the various directions do not 
commute. This gives rise to anisotropic couplings even if the initial ones were 
isotropic. The simplest way to avoid this is to do the successive decimations in an 
infinitesimal manner. The eqs. (2.13) and (2.15) are easily modified to a differential 
change in the x lattice spacing a x and become 

a d e ( " ' "  = ~ . " "  
x d a  x ,-n 

if # and J, *= x,  (2.16) 

ax d ~  ~ b~ x ' ' )  = b~X,')log(b~X,')/d.). (2.17) 

We can now change the lattice spacings in all directions and drop the direction 
indices to obtain the final result for the renormalization group functions 

Ofl~ bn log( a_~afl,d = ( d -  2)B. + 2)-'.., ~ , b. . /d . )  . (2.18) 

The number 2 appears in this equation because each plaquette involves two of the d 
dimensions. For a spin theory these become ones. 

We now wish to show that this recursion relation preserves the self duality of the 
four-dimensional model with gauge group 

Zp = ( exp (2~r in /p  )ln = 0 . . . . .  p - 1). (2.19) 

This group has exactly p irreducible representations, all one dimensional, and given 
by 

R . ( v ) =  u", , , = o  . . . . .  p - 1 .  (2.20) 

Thus eqs. (2.4) and (2.5) are simply 

p - I  

s ~ ( v )  = E L v  ~, 
n=O 

(2.21) 

Duality is the statement [8, 9] 

p - I  
e s°('~ = £ b.V". 

n=O 
(2.22) 

Z ( b )  = Z(/~), (2.23) 
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where 

bn = A.mbm, (2.24) 

and the unitary matrix A is the discrete Fourier transform 

Amn = le2 '~i"" /P.  (2.25) 
~/P 

Rewriting the recursion relation for the variables b, in d = 4 gives 

d Ob, 
a-~ab ~ = 2b, log b, + 2 ~  "-n'-JT-fl"" (2.26) 

n p 

A little algebra with the character orthogonality relation makes the second term 
simple in terms of the dual variables 

a ~ a b  ~ = 2b, log b n + 2]~A*,./~,.log/~,~ + b, log p.  (2.27) 
r n  

Multiplying this equation by the matrix A gives the same equation with b and /~ 
interchanged and A replacing A*. Thus we see that the operation of bond moving 
and decimation are dual to each other. 

3. The Z 4 renormalization group equations 

Specializing to the group Z 4 = (+  1, _ i), we consider the plaquette action 

S~(U)  = flo + f l , (V+  U*) + fl2U 2. (3.1) 

Although only fll and f12 are  dynamically relevant, we keep the normalization fl0 for 
convenience. The reality condition of eq. (2.3) requires the coefficients of U* = U 3 
and U to be equal. 

This model has several interesting limits. When /32 vanishes we have the usual 
Wilson Z 4 model with a first order transition at the self dual point [10,11] 
fll = ½ In(1 + ~/2). For vanishing fll we have a Z 2 theory with an irrelevant double 
covering of the group. In this case there is a single first order transition at [1 1, 12] 
]32 = ½ ln(1 + ~/2). Finally, consider the limit fiE ~ o¢. In this case every plaquette is 
driven to lie in Z 2 -- (+_ 1). Up to a gauge transformation, each link is in Z 2 and we 
again have the Z 2 transition at fll = ¼ ln(l + ~/2). 

We now proceed to the kinematics. The parameters b n are 

b 0 = ¼eOo(e2Ol+#2 + 2e-202 + e-20,+02), 

b l = ¼e#o(e2#,+#2 _ e-2#1+#2), 

b 2 = ¼et~o(e2a,+#: _ 2e-~2 + e-2a~+#:). 

(3.2) 

(3.3) 

(3.4) 
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The dual variables are 

/~o = ½(bo + 2bl + b2) = ½ eB°+20' +#2, (3.5) 

/~, = ½(b o - 62) = ½ e ~°-02, (3.6) 

/~2 = ½(bo - 2b, + b2) = i et~0-2a~+a2 (3.7) 

The model  is self dual with b, =/~n whenever 

b o -  2b I - b 2 = 0. (3.8) 

In terms of the fl parameters  this reduces to the curve 

/32 = - ½ log sinh 2/31 . (3.9) 

Inverting equations (3.5)-(3.7) gives 

/30 = ¼ log(8/~o/~l/~2 ) ,  (3.10) 

/31 = ¼ 1og(/~o//~2), (3.11) 

f12 = ¼ log( b0/92/b2 ). (3.12) 

The renormalization group functions are now easily found 

d 
a-d-daflO = 2/30 + l (bol  ÷ 2/~{ -~ +/~21)b01n b0 + ½(/~o ~ +/~i- l )b l ln  b~ 

+ ¼(/~o 1 - 2/~ -l +/~21)bEln bE, (3.13) 

d 
a-d-dill = 2/31 + ¼(/~o 1 - /~21)(b01n b0 + b21n bE) ÷ ½(/~o I +/~2 l)bl  In bl ,  

(3.14) 

d 
a-d-aa/32 = 2/32 + ¼ (/~o I - 2/~ -I +/~2 l)b01n b0 + ½(/~o I - /~21 ) bl ln bl 

+ ¼(/~o 1 + 2/~11 +/~21)b21n b E . (3.15) 

As fl0 is just  an overall normalization, we will concentrate  on the equations for/31 
and f12 in sect. 4. 
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4. Flows and fixed points 

Fixed points of the recursion relation occur when the physically relevant couplings 
fll and/32 are invariant under scale changes. Thus we are interested in simultaneous 
zeros of the right-hand sides of eqs. (3.14) and (3.15). These occur at: 

(A) the self-dual point of the Wilson model, 

/3t = ½ log(1 + ~/2) = 0.44068 . . . .  /32 = 0;  

(B) the self-dual point of the Potts action, 

/31 = /32 • - -  ½ logsinh/3i = 0 . 2 7 4 6 5 . . .  ; 

(C) the Ising transition on the/32 axis, 

/31 = o ,  /32 = ½ l o g 0  + ¢2) = 0 . 4 4 0 6 8 . . .  ; 

(D) the Ising transition at 

f12 = oo, /3t = ¼ log(l + ¢2) = 0.22034.. .  ; 

(E) the strong coupling point, fll = f12 -- O; 
( F )  = O , / 3 2  = o o ;  

(G) /3t = oo, 13 2 = O; 
(H) fll = oo,/32 = + oo; 
(I) /31 = oo,/32 = - o0. 

If we start at some point in the fl,,/32 plane and integrate eqs. (3.14) and (3.15), we 
obtain flow curves which connect various of these fixed points as a runs from 0 to 
infinity. In fig. 1 we show this plane along with several typical flow curves. 
Separatrices connect several of these fixed points and divide the coupling space into 
distinct regions. The solid curves in fig. 1 represent the predicted critical lines. 
Integrating the renormalization group equations to large lattice spacing yields 
sharply different final results depending on which side of one of these critical lines 
one begins. 

The renormalization group equations predict the exponents for the divergence of 
the correlation length near the critical lines. As we approach a critical line along a 
trajectory which intersects it in a non-tangential way, we characterize the correlation 
length divergence 

<x (/3i- ~3it)-'" (4.1) 

A flow curve from near a critical line will pass near one of the fixed points as we 
integrate out degrees of freedom. The closer one is to the critical line, the more 
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Fig. 1. Renormalization group flows for the Z 4 system. The points A-I are the fixed points discussed in 
the text. The solid curves are the predicted phase transition lines. The dashed curves are typical flows, 

directed towards increasing lattice spacing. The length of the dashes is proportional to the flow rate. 

"time" in the sense of the variable a is spent flowing in the vicinity of the critical 
point. Thus the value of v is determined by the behavior of the flow curves near the 
fixed point. We are led to linearize the renorroalization group equations near a fixed 
point fl;. 

a-~a(fli--fliF)=Mij(#j--#jF)+O((fl--flF)2). (4.2) 
The matrix M may then be diagonalized, and its positive eigenvalues represent the 
critical exponents. Thus, near the critical line connecting points A and B, the flow 
curves pass near point A. The corresponding matrix M has one positive eigenvalue 

J, = 0.7535 . . . .  (4.3) 

with eigenvector parallel to the f l l  axis. This same eigenvalue determines the critical 
behavior on the other side of point A, running to point I. In a similar manner we 
find the exponent along the dual lines BC and BD from the positive eigenvalue at 
point C. This gives numerically the same exponent as in eq. (4.3). 

We now turn to fixed point B, which has two positive eigenvalues. This point is 
ultraviolet attractive in all directions. The larger of these eigenvalues represents 
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approach along the Potts line fl~ =/32 and gives a new exponent 

1,p = 0.914. (4.4) 

Note that in this simple example we see the prediction of universality. For the 
range of couplings along, say, the line AB, we have a universal critical exponent 
determined by fixed point A. Thus any one parameter model representing a 
trajectory crossing this line should be in the same "universality class". 

5. Discussion 

Recent Monte Carlo studies have investigated the full two coupling Z 4 gauge 
model [9]. The renormalization group predictions presented here give some but not 
all features of the phase diagram. The splitting of the self dual transition AB into 
two mutually dual Z 2 like transitions indeed occurs at a triple point, although this 
point appears in actuality to lie above the Potts point. In the gauge model all these 
transitions are first order, rather than the predicted second order. This problem with 
the Migdal relations for a gauge theory was already observed with the simple Z 2 
system. 

The most glaring feature missed by the recursion relation is the splitting of the self 
dual transition at negative f12 to give an intermediate Coulomb phase. The Monte 
Carlo results also indicated another first order transition line originating from the Z 2 
transition on the negative /32 axis. This line lies entirely in a region where the 
parameter b 2 is negative. Here the infinitesmal form of the recursion relation must 
break down because the logarithms in eq. (2.18) become complex. 

In conclusion, we feel that the Migdal-Kadanoff recursion relations provide a 
simple tool which rather rapidly makes predictions on rather complex phase dia- 
grams. The results can miss certain subtle details, but, in the same spirit as mean 
field theory, the approximation gives a qualitative understanding of many gross 
features. 
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